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Chapter 1

Introduction

1.1 Frequentists vs Bayesians

During the last decade the number of Bayesian papers in economics, finance and market-
ing has increased dramatically. However, frequentist inference still dominates economic
literature, and Bayesian methods have had very little impact in economics so far. This is
stunning given that a large proportion of statistical papers published today are explicitly
Bayesian (Imbens and Wooldridge, 2007). What can drive this gap between proportion
of Bayesian methods in statistics and economics? First, lets explain it by the historical
reasons.

Being in the domain of economics, lets try to address this question with some economic
intuition. Following Becker/Murphy approach, we can think of overall statistical knowl-
edge in the field (i.e. economics, computer science, etc.) as a stock of specific human
capital. A decade ago Bayesian methods were very restrictive due to lack of computational
power necessary for simulations. With the development of technology these costs have
become much lower, that is, the ”price” of Bayesian inference has dropped. Assume for a
moment that Bayesian methods are a perfect substitute to frequentist methods, and that
all differences in methods come through some price of usage. Assume also that overall
price of Bayesian inference today is lower than frequentist inference. If the stock of human
capital would have the depreciation rate of one, economic theory tells us that researchers
would use the methods with lower price, that is, switch to Bayesian inference. However,
depreciation rate of human capital is usually much lower than one. This fact, coupled with
key characteristic of human capital (it is inseparable from the owner, that is, cannon be
sold), we can conclude that transition will take some time. The speed of this transition
path is determined by the speed of depreciation of the human capital.

This analysis allows to conclude the following: even if the ”price” of Bayesian inference
nowadays is lower than ”price” of frequentist inference, proportion of Bayesian papers
would depend on the depreciation rate. It is intuitive that in statistics, the field where
statistical knowledge is the core one, stock of statistical knowledge will be renewed much
faster than in economics. This implies the difference in the extent to which Bayesian
methods are used today.

Now lets relax the assumption that price of Bayesian inference is lower than price of
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1.1. FREQUENTISTS VS BAYESIANS CHAPTER 1. INTRODUCTION

frequentists inference. Both have pros and cons, and mapping these into one dimension is
problematic. There is an ongoing philosophical debate between frequentists and bayesians.
Frequntists perspective on inference can be summarized as follows:

1. Parameters of interest are constants;

2. Estimation results in point estimates of these parameters and a confidence interval
around it;

3. Estimation boils down to ”accept” or ”reject” conclusion about a given hypothesis.

Bayesians treat inference differently:

1. Parameters of interest are random variables;

2. Estimation results in a posterior distribution;

3. Posterior distribution contains all information about the parameter of interest.

The main philosophical difference is in treating the variance of an estimator. Frequentists
use variance to accept or reject the hypothesis about the true value of θ. 95% confidence
interval tells us that the true value of θ is inside of this interval with 95% probability.
Bayesian probability intervals tell us that conditional on data and given a wide range or
prior distributions, the posterior probability that θ would be in this interval is 95%. In a
way frequentists through away information on the tails1. However, in practice Bayesian and
frequentist inference is often very similar (that is, confidence intervals can be treated closely
to the Bayesian probability intervals). The formal statement of this result is known as
Bernstein-von Mises Theorem2, which links Bayesian and frequentist inferences to the realm
of asymptotics. This addresses another reasons often mentioned against using Bayesian
inference: necessity to specify a prior. In fact, if prior distribution is not dogmatic3, as
the amount of data available increase prior distribution ”washes out” of the posterior.
Later I give examples where Bayesian and frequentist estimators are asymptotically the
same.

Summing up, three main reasons are often mentioned against Bayesian methods:

• Its difficult to choose a prior distribution;

• Its necessary to specify a full parametric model;

• Its computationally complex.

We have just addressed the first reason using asymptotics equivalence argument. Second
reason is a more serious one, but 1) a flexible specification can be chosen for the nuisance
function, which would give robust results, and 2) Bayesian semi-parametric method have
being developed. The final reason is more of a traditional one: with the development of
MCMC methods Bayesian solutions sometimes are even less computationally burdensome
(i.e. cases of bimodal underlying distributions and big parametric space).

1Calibrators go even further, using the point estimate as a true value.
2The theorem does not apply to irregular cases, i.e. time series with unit roots
3That is, does not put zero measure on any possible θ.
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1.2 Road Map

In the next chapter I discuss foundations of Bayesian inference. It starts with the statement
of Bayes’ Theorem and its main ingredients: prior and posterior distributions, likelihood, as
well as predictive distribution and point estimator. In section 2.2 I discuss two fundamental
principles: likelihood and sufficiency, both obeyed by Bayesian methods. In section 2.3 I
define conjugacy of distributions and give several examples. Section 2.4 shows how simple
linear regressions is done in Bayesian context.

In chapter 3 I discuss numerical methods that complement bayesian analysis. Section 3.1
contains definition of Monte Carlo simulation, and section 3.2 discuss basic Markov chain
theory. Section 3.3 combines the two and defines Monte Carlo Markov Chain method.
Section 3.4 contains a number of popular algorithms for the simulation of posterior, in-
cluding Gibbs sampler and Metropolis-Hastings algorithm. Section 3.5 has some applica-
tions.

1.3 Attributions and Literature

I used three main sources for reference. Some examples are taken from Imbens and
Wooldridge (2007) [3]. Discussion of algorithms is based on Rossi, Allenby and McCulloch
(2005) [5]. For theoretical results are taken from Robert (2007) [4]. Additionally, I used
notes of L.P. Hansen (2013) [2] as a reference for stochastic processes and ergodic theory.
Of course, all errors and typos are of my own.

1.4 Things out of scope

There is a lot of nice developments and applications of Bayesian methods, as well as things
that go together with Bayesian methods. Unfortunately, we will not be able to talk about
all of these. These notes do not discuss (for various reasons):

• Bayesian decision theory;

• Testing;

• Numerical integration methods;

• Optimization methods;

• Kalman Filter and HMM models;

• Model Averaging.

• and a lot of other things.
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Chapter 2

Foundations

2.1 Bayes’ Theorem and its Ingredients

2.1.1 Bayes’ Theorem

We start the discussion with the definition of the Bayes’ Theorem. Let A and B be two
events, P (B) 6= 0, where P (·) denotes probability. Then

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|AC)P (AC)
=
P (B|A)P (A)

P (B)

Notice that this implies that P (A|B)P (B) = P (B|A)P (A), which is intuitive as both of
these are equal to the joint probability P (A,B). In the continuous case this can be written
as

π(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ)dθ

(2.1)

where

• θ is the parameter of interest and x is data;

• π(θ) is a marginal distribution of θ;

• f(x|θ) is a conditional distribution of x given θ;

•
∫
f(x|θ)π(θ)dθ is a marginal distribution of x;

• π(θ|x) is a conditional distribution of θ given x.

π(θ) is what is also called a prior distribution, f(x|θ) is called likelihood of θ given x, and
π(θ|x) is called posterior distribution. Sometimes we will refer to the likelihood as l(θ|x)
(which is exactly f(x|θ): l(θ|x) = f(x|θ)), just to emphasize that likelihood is a function
of θ.

This is the stage where Bayesian and frequentists inference diverge. Frequentists use the
likelihood f(x|θ) to find a θ which maximizes it (that is, find MLE estimator). Bayesians
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are interested in the posterior distribution, which is the probability of observing a particular
θ given the data.

Computation of the posterior distribution can seem quite burdensome, especially due to
integration in the denominator. Indeed, updating the posterior would imply integration
in every step. However, expression in the denominator of (2.1) does not depend on θ,
which implies that posterior distribution is proportional to the likelihood times a prior
distribution:

π(θ|x) ∝ f(x|θ)π(θ)

Knowing likelihood and prior distribution, it is sometimes easier to scale their product by
some constant so that it integrates to one over θ rather than compute the marginal of x.
In particular, it allows to update posterior several times before this normalization (so it
will be done only once instead of being done in each stage). Moreover, some numerical
methods do not require knowing the exact posterior distribution.

2.1.2 Predictive Distribution

Likelihood, prior and posterior are the main ingredients of any Bayesian problem. The
only other distribution that sometimes appear is called predictive distribution:

g(xT+1|x) =

∫
g(xT+1|θ, x)π(θ|x)dθ

That is, the conditional distribution of the future observation given all observations up to
date is a function only of current data, not of θ (θ is integrated out). This contrasts the
frequentists method predicting the future using the point estimator.

2.1.3 Point estimator

Finding a point estimator in a Bayesian framework contradicts the fundamental ideas of
Bayesian estimation. However, one can easily compute the posterior expectation of function
of interest h(θ):

Eθ|x(h(θ) =

∫
h(θ)π(θ|x)dθ =

∫
h(θ)f(x|θ)π(θ)dθ∫
f(x|θ)π(θ)dθ

Another way to get to a point estimate is to look at the mode of θ and find h(θmode).

2.2 Two Fundamental Principles

Bayesian paradigm is highly accepted in the statistical literature as it follows two funda-
mental principles: Likelihood Principle and Sufficiency Principle.
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2.2. TWO FUNDAMENTAL PRINCIPLES CHAPTER 2. FOUNDATIONS

2.2.1 Sufficiency Principle

Definition 2.2.1. When x ∼ f(x|θ), a function T of x (also called a statistics) is said to
be sufficient if the distribution of x conditional upon T (x) does not depend on θ:

f(x|T (x), θ) = f(x|T (x)) (2.2)

This says that given T (x) conditioning on θ does not provide us with any extra information
about x. Under some regularity conditions (see Lehmann and Casella (1998)) Fisher-
Neyman factorization theorem holds:

f(x|θ) = g(T (x)|θ)h(x|T (x)) (2.3)

where g(·) is a density of T (x). Intuitively, this implies that we can find a mediating
function T (x) such that θ affects x only through this function1. We can define a minimal
sufficient statistics as a function of all other sufficient statistics. I.e. if X1, . . . , Xn are
independent draws from Bernoulli distribution with probability p,

∑N
i=1Xi is a sufficient

statistic for p, and if X1, . . . , Xn are independent draws from Normal distribution with
mean µ and known variance σ2, sufficient statistics is 1

n

∑N
i=1Xi = X̄. The following is

the sufficiency principle developed by Fisher:

Definition 2.2.2. Two observations x and y factorizing through the same value of a suf-
ficient statistic T , that is, T (x) = T (y), must lead to the same inference on θ.

In general, sufficiency is a very powerful concept in case of exponential distributions (as
minimal sufficient statistics is often two-dimensional), but can be not so useful in other
cases (for a number of distributions order statistics is minimal sufficient, and it has the
same dimension as the original sample).

2.2.2 Likelihood Principle

Definition 2.2.3. The information2 brought by an observation x about θ is entirely con-
tained in the likelihood function l(θ|x) = f(x|θ). Moreover, if x1 and x2 are two observa-
tions depending on the same parameter θ, such that there exist a constant c satisfying

l1(θ|x1) = cl2(θ|x2)

for every θ, they then bring the same information about θ and must lead to identical infer-
ences.

Likelihood principle is only valid when inference is made about the same parameter θ and
if θ includes every unknown factor of the model. The following example was taken from
Robert (2007):

1Formally, refer to Rao-Blackwell theorem, which says that in case of estimators under a convex loss
function, optimal procedures would only depend on sufficient statistics (see Robert (2007), Chapter 2).

2Information in this case refer to any kind of information that can help to make inference on θ, not
information in Fisher information sense
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2.3. CONJUGATE DISTRIBUTIONS CHAPTER 2. FOUNDATIONS

Example 2.2.1. While working on the audience share of a TV series, 0 ≤ θ ≤ 1 represent-
ing the part of the TV audience, an investigator found nine viewers and three non-viewers.
If no additional information is available on the experiment, two probability models at least
can be proposed:

• the investigator questioned 12 person, thus observed x ∼ B(12, θ) with x = 9 (B is
Binomial distribution);

• the investigator questioned N person until she obtained 3 non-viewers, with N ∼
Neg(3, 1− θ) and N = 12 (Neg is negative binomial distribution).

That is, the random quantity can either be 9 or 12. Importantly, in both models likelihood
is proportional to

θ3(1− θ)9

so likelihood principle implies that inference on θ should be the same.

Bayesian approach is based on the posterior distribution, which depends on x only through
the likelihood l(θ|x), and thus automatically satisfy the Likelihood Principle.

2.3 Conjugate distributions

Bayesian inference is based on the posterior distribution; but for a general likelihood and
prior distribution, a nice analytical expression for a posterior is not guaranteed. Nowa-
days this is not a restriction due to powerful simulation methods; however, having a nice
expression for a posterior would simplify inference.

One way to deal with this is to require prior distribution to be conjugate to the likelihood:

Definition 2.3.1. A prior is said to be conjugate to the likelihood if the posterior derived
from the prior and likelihood is in the same class of distributions as the posterior.

Due to the properties of the exponent function exponential family of distributions have a
number of conjugate priors.

2.3.1 Example: Normal and Normal

Example 2.3.1. Suppose a conditional distribution of X given µ is N(µ, 1). Also suppose
that prior distribution of θ is N(0, 100). Assume we observe a single observation x. What
is the posterior distribution f(θ|x)?

Computing the posterior:

f(θ|x) ∝ exp(−1

2
(x− µ)2) exp(−1

2

µ2

100
) =

= exp−1

2
(x2 − 2xµ+ µ2 + µ2/100) ∝

∝ exp(−(µ− 100x/101)2

2(100/101)
)

9



2.3. CONJUGATE DISTRIBUTIONS CHAPTER 2. FOUNDATIONS

That is, posterior distribution f(θ|x) is N(100x/101, 100/101). We can conclude that two
normal distributions are conjugate, so normal prior times normal likelihood gives a normal
posterior.

Notice that variance of likelihood distribution was much less than variance of the prior
distribution, and the resulting posterior is closer to the likelihood than to the prior. One
can intuitively expect that posterior efficiently weight the information given by prior dis-
tribution and likelihood, and the weights are determined by the variance. Lets examine a
more general case to see if it holds.

Example 2.3.2. Suppose a conditional distribution of X given µ is N(µ, σ2) (σ2 is known).
Also suppose that prior distribution of θ is N(µ0, τ

2). Assume we observe a single obser-
vation x. What is the posterior distribution f(θ|x)?

f(θ|x) ∝ exp(− 1

2σ2
(x− µ)2) exp(− 1

2τ2
(µ− µ0)2) =

= exp−1

2
(
x2

σ2
− 2xµ

σ2
+
µ2

σ2
+
µ2

τ2
− 2µµ0

τ2
+
µ2

0

τ2
) ∝

∝ exp(−
(µ− x/σ2+µ0/τ2

1/σ2+1/τ2
)2

2 1
1/τ2+1/σ2

)

so posterior distribution of f(θ|x) is N(x/σ
2+µ0/τ2

1/σ2+1/τ2
, 1

1/τ2+1/σ2 ). As expected, posterior mean

is a weighed average of the prior mean µ0 and of the observation x, and weights are
proportional to the precision (1 over the variance) 1/σ2 and 1/τ2. Posterior precision is
just the sum of two precision components.

Intuitively variance of the prior distribution reflect to what extent researcher is sure about
his prior information. In case of τ2 being a big number researcher puts less weight on the
prior and more weight on the observation. Notice the researcher can even set τ2 = ∞
(which is not a proper distribution anymore). However, posterior will be perfectly well
defined:

f(θ|x) ∼ N(x, σ2)

Setting variance of the prior distribution to the infinity is the same as saying that we
know nothing about µ a priori. In general, we would like to find an uninformative prior
which would allow to identify the posterior distribution but put as few weight on itself as
possible.

To illustrate the idea of sufficiency principle lets look at another closely related exam-
ple.
Example 2.3.3. Again, suppose a conditional distribution of X given µ is N(µ, σ2) (σ2

is known). Also suppose that prior distribution of θ is N(µ0, τ
2). Assume we observe N

independent draws x1, . . . , xN . What is the posterior distribution f(θ|x1, . . . , xN )?
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2.3. CONJUGATE DISTRIBUTIONS CHAPTER 2. FOUNDATIONS

f(θ|x1, . . . , xN ) ∝ exp(− 1

2τ2
(µ− µ0)2)

N∏
i=1

exp(− 1

2σ2
(xi − µ)2) ∝

∝ exp(−
(µ−

∑
i xi/σ

2+µ0/τ2

N/σ2+1/τ2
)2

2 1
1/τ2+N/σ2

)

so posterior distribution of f(θ|x1, . . . , xN ) is N(
∑

i xi/σ
2+µ0/τ2

N/σ2+1/τ2
, 1

1/τ2+N/σ2 ). Posterior dis-

tribution f(θ|x1, . . . , xN ) depends only on sufficient statistic
∑

i xi.

2.3.2 Example: Binomial and Beta

For an example without normal distribution consider the following:

Example 2.3.4. Conditional distribution of X is B(θ), where B is Bernoulli distribution,
and prior distribution is Beta(α, β). Assume we observe N independent draws x1, . . . , xN .
What is the posterior distribution f(θ|x1, . . . , xN )?

In this case joint density of the data is

f(x1, . . . , xN |θ) = θ
∑

i xi(1− θ)N−
∑

i xi

and prior is proportional to
π(θ) ∝ θα−1(1− θ)β−1

Then
f(θ|x1, . . . , xN ) ∝ θα−1+

∑
i xi(1− θ)β−1+N−

∑
i xi

That is posterior distribution is Beta(α+
∑

i xi, β +N −
∑

i xi)

2.3.3 Asymptotic Equivalence

Lets go back to the example with N normal observations. What happens as N →∞?

We can rewrite

f(θ|x1, . . . , xN ) ∼ N(

∑
i xi/σ

2 + µ0/τ
2

N/σ2 + 1/τ2
,

1

1/τ2 +N/σ2
)

as

f(θ|x1, . . . , xN ) ∼ N(

∑
i xi/σ

2

N/σ2 + 1/τ2
+

µ0/τ
2

N/σ2 + 1/τ2
,

1

1/τ2 +N/σ2
)

For N → ∞ limE(θ|x) = x̄ and limV (θ|x) = 0. Examine the distribution of
√
N(µ −

x̄): √
N(x̄− µ)|x1, . . . , xN ∼ N(0, σ2)

We can conclude that as N increases 1) effect of prior distribution disappears, as notes
before; 2) large sample properties of the estimator are the same as in a frequentists analy-
sis.
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In general this result is known as Bernstein-von Mises Theorem, and is applicable the a
wide range of distributions (i.e. as an exercise do the same for Binomial and Beta from the
previous section). See Imbens and Wooldridge (2007) for a statement of the Theorem.

2.4 Bayesian Regressions

2.4.1 Multiple Regression

Lets give several example of practical econometrics problems. Suppose we want to analyze
simple multiple regression:

yi = x′iβ + εi εi ∼ iidN(0, σ2)

that is
y ∼ N(Xβ, σ2I)

This is a conditional distribution of y given x. Assume that distribution of x depends on
some other parameter ψ, and ψ is a priori independent of β and σ2. We can write the
posterior of ψ, β, σ2 as

π(ψ, β, σ2|y,X) ∝ (π(ψ)f(X|ψ))(π(β, σ2)f(y|X,β, σ2) (2.4)

We can focus on the second term of (2.4) which does not depend on ψ. Now we need to
specify a prior π(β, σ). We need to find a natural conjugate prior for

f(y|X,β, σ2) ∝ (σ2)−n/2 exp(− 1

2σ2
(y −Xβ)′(y −Xβ)) (2.5)

Natural conjugate prior for σ2 and β would be proportional to (2.5). Notice that exponent
term has quadratic expression for β in it. This allows to assume that normal prior for β
would be conjugate. Lets rewrite the term in the exponent as a usual quadratic expression
in β by projecting y on X and taking a part independent of β out:

f(y|X,β, σ2) ∝ (σ2)−n/2 exp(−y
′Mxy

2σ2
) exp(− 1

2σ2
(β − βOLS)′(X ′X)(β − βOLS)) (2.6)

where Mx is a projection on space orthogonal to X: Mx = I − X(X ′X)−1X. The first
term in (2.6) suggests inverse gamma prior of σ2, while the term in the exponent suggest
normal prior for β. Thus, we have split the prior into two parts:

π(β, σ) = π(σ2)π(β|σ2)

π(σ2) ∝ (σ2)−ν0/2+1 exp(−ν0s
2
0

2σ2
)

p(β|σ2) ∝ (σ2)−k/2 exp{− 1

2σ2
(β − β̄)′A(β − β̄)}

where π(σ2) is standard inverse gamma with α = ν0/2 and β =
ν0s20

2 and p(β|σ2) ∼
N(β̄, σ2A−1).
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2.4. BAYESIAN REGRESSIONS CHAPTER 2. FOUNDATIONS

Now we can express the posterior π(β, σ2|y,X). Given the conjugacy posterior will be the
same form as the prior:

π(β, σ2|y,X) ∝ (σ2)−(n+ν0)/2+1 exp(−(ν0s
2
0 + ns2)

2σ2
)× (2.7)

× (σ2)−k/2 exp{− 1

2σ2
(β − β̃)′(X ′X +A)(β − β̃)} (2.8)

where
β̃ = (X ′X +A)−1(X ′XβOLS +Aβ̄)

ns2 = (y −Xβ̃)′(y −Xβ̃) + (β̃ − β̄)′A(β̃ − β̄)

This implies that
β|σ2, y,X ∼ N(β̃, σ2(X ′X +A)−1)

σ2|y,X ∼ IG((ν0 + n)/2, (ν0s
2 + ns2)/2)

The Bayes estimator of the posterior mean is β̃. Notice that β̃ is a weighted average of the
prior mean and the OLS estimator, βOLS . Also, notice that if precision parameter A goes
to zero, β̃ = βOLS , and ns2 = ê′ê. Other way of thinking about it is that as we accumulate
for observations, weight of prior information goes to zero, and β̃ converge to βOLS .

2.4.2 Multivariate Regression

Another example of regression which is more general but where conjugate priors can still
be found is multivariate regression. We have a set of equations:

y1 = Xβ1 + ε1
...

ym = Xβm + εm

(2.9)

Each equation has a set of n observations, with X being the same and ε being correlated
across regressions (but iid across observations!). That is, one observation (across equations)
can be written as

yr = B′xr + εr ε ∼ iid N(0,Σ)

Σ is of dimension m, and columns of B correspond to equations 1, . . . ,m (B is (k ×m)).
We would like to know the posterior of B and Σ. Denote β = vec(B). Without going
into details (please see Rossi et al. (2005), Section 2.8.5) we can say that this problem has
natural conjugate priors:

p(Σ, B) = p(Σ)p(B|Σ)

Σ ∼ IW (ν0, V0)

β|Σ ∼ N(β̄,Σ⊗A−1)

Posterior distribution is
Σ|Y,X ∼ IW (ν0 + n, V0 + S)

β|Σ, Y,X ∼ N(β̃,Σ⊗ (X ′X +A)−1)

β̃ = vec(B̃) B̃ = (X ′X +A)−1(X ′XBOLS +AB̄)

S = (Y −XB̃)′(Y −XB̃) + (B̃ − B̄)′A(B̃ − B̄)

13
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2.4.3 Seemingly Unrelated Regression

Lets generalize standard regression even further. Consider (2.9) having different X in each
set of regressions (1, . . . ,m). That is, regressions are related only by the correlation in
ε:

y = Xβ + ε

y =


y1
...
ym

 X =


X1 0 0 0
0 X2 0 0

0 0
. . . 0

0 0 0 Xm

 ε


ε1
...
εm

 (2.10)

var(ε) = Σ⊗ In
There are no conjugate priors for this problem: assuming normal prior for β|Σ and inverted
Wishart for Σ, we cannot integrate out Σ from the conditional distribution for β. it
turns out that this problem can easily be solved via MCMC methods (Gibbs sampler in
particular), which we discuss in the next section.
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Chapter 3

MCMC Methods

Although it is nice to have a conjugate prior distribution, it is somewhat restrictive. As
mentioned before, current developments of computational power for numerical methods
allow to tackle posterior distributions which are much more general. This section dis-
cuss Markov Chain Monte Carlo (MCMC) methods that are available for simulating the
posterior distribution.

3.1 Monte Carlo simulation

Say we need to approximate an integral of the form∫
Θ
g(θ)f(x|θ)π(θ)dθ (3.1)

One way to go is to use numerical integration, i.e. polynomial quadratures for cases of
distribution close to normal (see Robert 2007, Section 6.2.1, for a short description and
references). Numerical integration is a vast topic which we would not be able to cover
here.

We can go in another direction and take advantage of the fact that π(θ) is a known
density. If it is possible to sample from this density we can generate m draws θ1, . . . , θm
and compute

1

m

m∑
i=1

g(θi)f(x|θi)

From the LLN we know that this (almost surely) converge to the expectation of g(θ)

1

m

m∑
i=1

g(θi)f(x|θi)
a.s.−−→

∫
Θ
g(θ)f(x|θ)π(θ)dθ

as desired. Similarly, we can also sample for the posterior π(θ|x):

1

m

m∑
i=1

g(θi)
a.s.−−→

∫
Θ g(θ)f(x|θ)π(θ)dθ∫

Θ f(x|θ)π(θ)dθ

15
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3.1.1 Importance sampling

Monte Carlo methods can be generalized even further. Sampling from π(·) or π(·|x) can
be quite complicated. But luckily we are not restricted to the simulation only from these
two: if h(·) is a probability density such that supp(h) includes support of g(θ)f(x|θ)π(θ),
integral in (3.1) can be written as∫

Θ

g(θ)f(x|θ)π(θ)

h(θ)
h(θ)dθ (3.2)

Function h(·) is importance sampling function: generating θ1, . . . , θk from h we can ap-
proximate (3.2) by

1

k

k∑
i=1

g(θi)wi(θi)

where wi(θi) = f(x|θi)π(θi)
h(θi)

, and again by LLN

1

k

k∑
i=1

g(θi)wi(θi)
a.s.−−→

∫
Θ
g(θ)f(x|θ)π(θ)dθ

Approximation of the expectation of g(θ) under π(·) can be computed as

Eπ(g(θ)|x) ∼
∑k

i=1 g(θi)w(θi)∑k
i=1w(θi)

(3.3)

This approximation does not depend on the normalizing constants in h(θ), f(x|θ) and π(θ),
which allows to use it in the setting with unknown constants.

Importance sampling is a very powerful tool; however, there are two important caveats.
First, support of h(·) should include support of g(θ)f(x|θ)π(θ) as said above. This is
not so restrictive. Second, although (3.3) theoretically converges to Eπ(g(θ)|x), choice of
function h determines the variance of the estimator (3.3). If h is chosen such that it is
far from g(θ)π(θ|x), Eh(g2(θ)w2(θ)) would be not finite, and variance of (3.3) would be
infinity.

Bottom line: choose h(·) such that

• It is easy to simulate from it;

• Support of h(θ) covers the support of g(θ)f(x|θ)π(θ);

• h(θ) is as close to g(θ)f(θ|x) as possible.

From which h(·) it is easy to sample? There is a number of distributions for which effi-
cient methods of simulation are available. We discuss the most common ones in the next
subsection.

3.1.2 Methods of simulations: frequently used distributions

Simulation seems to be an easy solution for any kind of problem: if we know the posterior
why not just simulate from it. However, in generating random numbers for an arbitrary
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(and possibly high-dimensional) distribution has no general purpose solution. Later in
Chapter we will discuss methods that exploit special structure of Bayesian models, but the
basic building block for these methods is efficient simulation from the simple frequently
used distributions. I discuss several examples here; interested readers can refer Rossi et al
(2005), Section 2.11.

All methods for continuous random generation start with uniform pseudo-random number
generator. From uniform randoms one can get to normal, gamma and chi-squared random
variates i.e. via inverse cdf method. Inverse cdf method does exactly what one would ex-
pect: it takes a uniform draw and numerically computes random variable that corresponds
to this quantile level.

Inverse cdf methods can also be applied to sample from truncated distributions. I.e. if we
want to simulate normal draws conditional on being greater than zero (think about Tobit
models), we can invert the following cdf:

GX(x) =
F (x)− F (0)

F (∞)− F (0)

Solving this for x:
x = F−1(GX(x)(F (∞)− F (0)) + F (0))

and we can sample it by sampling U(0, 1) for GX(x).

Sampling multivariate normals is easily done with the help of Cholesky matrix: we can
sample standard normals z1, . . . , zk, and then compute

x = U ′z + µ ∼ N(µ,Σ)

where Σ = U ′U .

Rossi et al. (2005) discuss how to sample from Student t, Wishart and Inverted Wishart,
Multinomial and Dirichlet distributions via other simple algebraic procedures.

3.2 Basic Markov Chain Theory

In this section we discuss the basics of Markov chains.

Definition 3.2.1. Markov chain is a sequence of random variables Xi i = 1, 2, . . . such
that

P (Xn+1 = x|X1, . . . , Xn) = P (Xn+1 = x|Xn) (3.4)

(3.4) is also referred to as Markov property.

Markov chains can be both discrete and continuous. In order for the Markov chain to
recover distribution of interest we need it to be ergodic (so that we can apply a more general
LLN on the simulated draws). We can spend several pages on the definitions of stochastic
processes and get to Birkhoff ergodic theorem, but lets try to use some intuition. Discrete
space is more convenient for this, so lets take a discrete process as an example.
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In discrete case Markov Chain has a transition probability matrix P: let there be n states
of X, then P is a n by n matrix, where entries i, j is a probability of moving from state
i to state j. Thus, the right eigenvector of this matrix is one (as probabilities sum up to
one): P1 = 1. Let q be a n-dimentional vector. q is a stationary distribution if it is a left
eigenvector associated with a unit eigenvalue:

q′P = q′

In order for the Markov chain to recover distribution of interest we need that it visits all
states of interest. Assume we are interested in all states in the state space. In this case,
we need probability of getting to any state j from any state i being strictly greater than
zero (not necessarily in one iteration). Than the smallest invariant event is the state space
itself (there is not subset of states getting to which we get stuck), and the chain is ergodic
(definition of ergodicity says that under a certain probability measure all invariant events
have probability zero or one).

If we know that chain is ergodic, it satisfies

1

N

N∑
i=1

Xi
a.s−−→ E(X) (3.5)

if E|X| <∞

E


∣∣∣∣∣∣ 1

N

N∑
i=1

Xi − E(X)

∣∣∣∣∣∣
2
 m−s−−−→ 0 (3.6)

if E|X|2 <∞, where X is a random vector.

In a bit more general formulation, result in (3.5) is known as Pointwise Ergodic Theo-
rem.

3.3 Monte Carlo Markov Chain

Now lets combine Monte Carlo methods with Markov chains. We want to formulate Markov
chain on a parameter space. Denote π(·) a a stationary distribution of this Markov chain (ei-
ther discrete, continuous, or a mixture of the two). We want to draw from π(θ|θi, x).

We can start with some θ0. Then draws θ1|θ0 ∼ π(θ|θ0, x). Then θ2|θ1 ∼ π(θ|θ1, x).
Repeating this N times we get a sample θ0, . . . , θN .

Using the result in (3.5), this Markov chain would have a stationary distribution π(θ) and
would satisfy the following (for any function h(·), so it also holds for posterior π(θ|x)):

lim
N→∞

1/N

N∑
i=1

h(θi) = Eπ(h(θ))

Notice two things about the sequence θ0, . . . , θN :
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• It depends on the initial conditions (for the first iterations);

• It is not iid.

To account for the first problem researchers sometimes drop first B observations (this is
called ”burn-in” period). The second point is not a problem (as long as the dependence
is not too high) as we can always increase the simulation size, and we know that long-run
averages of the draws from the Markov chain would converge to the appropriate integral
over the posterior distribution π(θ|x), and that posterior distribution constructed from
Markov chain draws would closely approximate the true posterior distribution.

There are several questions that follow:

• What are methods or algorithms for specifying the chains with the right stationary
distributions?

• Do this methods produce ergodic chains?

• How long should we run this chains?

The most common methods and algorithms are discussed in the following sections.

3.4 Methods and Algorithms

3.4.1 Gibbs Sampler

Gibbs Sampler takes a step forward from simulating from π(θ|θi, x), but it is somewhat
more intuitive. Lets start with an example
Example 3.4.1. Let (

θ1

θ2

)
∼ N

( 0
0

)
,

[
1 ρ
ρ 1

]
We need to simulate the joint distribution of this.

Straightforward solution would simply to simulate a joint distribution directly as discussed
before. In this case iid draws are easily available. Assume, however, that we can simulate
only from conditional distributions:

θ2|θ1 ∼ N(ρθ1, 1− ρ2)

θ1|θ2 ∼ N(ρθ2, 1− ρ2)

Gibbs sampler simulates

(
θ1i

θ2i

)
draws in the following manner:

1. Start with some

(
θ10

θ20

)
;

2. Draw

(
θ11

θ21

)
in two steps:
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• θ21 ∼ N(ρθ10, 1− ρ2)

• θ11 ∼ N(ρθ21, 1− ρ2)

3. Repeat step 2. drawing θ2|θ1, . . . , θN |θN−1 for some N

The resulting draws are highly correlated, but for sufficiently large N produce a good
approximation of the joint distribution. The method is quite useless in this case as iid
draws are available; however, it is very powerful when iid draws are computationally infea-
sible.

In more general case, vector of parameters can be partitioned into more than two groups,
and the same iterative procedure applies:

1. Start with some (θ10, . . . , θk0)′;

2. Draw (θ11, . . . , θk1)′ in two steps:

• θ11 ∼ f1(θ1|θ20, . . . , θk0)

• θ21 ∼ f2(θ2|θ11, θ30, . . . , θk0)

• . . .

• θk1 ∼ fk(θk|θ11, . . . , θ(k−1)1)

3. Repeat step 2. drawing θ2|θ1, . . . , θN |θN−1 for some N

Notice that f can be the posterior distribution π(θi+1|θi, x). Hence, Gibbs sampler allows to
approximate numerically π(θ|x) by simulating from conditionals (i.e. in case of partitioning
θ into two) π(θ2|θ1, x) and π(θ1|θ2, x). This is one way to see that knowing two conditionals
implies knowing a joint distribution.

Lets discuss two examples where Gibbs sampler can be more useful. First, we go back to
seemingly unrelated regressions; second, we introduce the idea of data augmentation.

3.4.2 Gibbs and SUR

Reconsider the model in (2.10):
y = Xβ + ε

y =


y1
...
ym

 X =


X1 0 0 0
0 X2 0 0

0 0
. . . 0

0 0 0 Xm

 ε


ε1
...
εm


ε ∼ N(0,Σ⊗ In)

Lets assume a simple prior structure:

π(β,Σ) = π(β)π(Σ)

β ∼ N(β̄, A−1)
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Σ ∼ IW (ν0, V0)

This priors are said to be conditionally conjugate: given β we can draw from Σ, and vice
versa. Given Σ, lets premultiply the system of equations by the inverse of Cholesky root
of Σ, Σ = U ′U , so that error terms would be uncorrelated:

ỹ = X̃β + ε̃

ỹ = ((U−1)′ ⊗ In)y X̃ = ((U−1)′ ⊗ In)X var(ε̃) = Im ⊗ In
Then we can write conditional posteriors

β|Σ, X, y ∼ N((X̃ ′X̃ +A)−1(X̃ ′ỹ +Aβ̄), (X̃ ′X̃ +A)−1) (3.7)

Σ|β,X, y ∼ IW (ν0 + n,E′E + V0) E = [ε1, . . . , εm] (3.8)

Now implement Gibbs sampler by

• Start with some β0, Σ0;

• draw β1|Σ0 from (3.7);

• draw Σ1|β1 from (3.8);

• Repeat.

3.4.3 Data Augmentation

Think about the following example:

Example 3.4.2. We are interested in the parameters of a Tobit model. The latent variable
is

Y ∗i = X ′iβ + εi

where εi|Xi ∼ N(0, 1). We observe

Yi = max(0, Y ∗i )

and the regressors Xi. Suppose prior of β π(β) ∼ N(µ,Ω).

The posterior distribution of β does not have a closed form expression. This is due to the
fact that these is no conjugate distribution for this problem. Gibbs sampler comes as a
neat solution. Lets treat both Y ∗ = (Y ∗1 , . . . , Y

∗
N ) and β as random variables. Conditional

distribution of Y ∗|β,X is
Y ∗i |β,X ∼ TN(X ′iβ, 1, 0)

where TN(µ, σ2, c) is a truncated normal with c being an upper bound (truncation from
above). Conditional distribution of β|Y ∗, X is

β|Y ∗, X ∼ N((X ′X + Ω−1)−1(X ′Y + Ω−1µ), (X ′X + Ω−1)−1)

The latter is a β bayesian estimate in the usual linear regression model. Notice that if
Ω =∞ β corresponds to the asymptotic OLS estimator.

We can apply Gibbs sampler, drawing Y ∗|β,X and β|Y ∗, X, replacing β and Y ∗. Repeating
this steps would give us posterior distribution π(β|X).

The stage of constructing latent variables Y ∗ is called data augmenting.
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3.4.4 Hierarchical Models

One of the most common applications of Gibbs sampler is to hierarchical models. Hierar-
chical models are models constructed from a sequence of conditional distributions. Before,
we had a prior π(θ1) and a likelihood f(x|θ1). Lets denote prior as the first step and
likelihood as the second step in forming a posterior.

Now, lets add another parameter θ2 to the prior distribution: π(θ1, θ2). Importantly,
likelihood f(x|θ1) still depends only on θ1. We can write this joint distribution as a
product of marginal and conditional:

π(θ1, θ2) = π(θ2)π(θ1|θ2)

We can think about it as adding another initial step in computing the posterior: now, first
step is π(θ2), second step is π(θ1|θ2), and third step is f(x|θ1). First and second steps
represent hierarchical structure, and are called first stage and second stage, respectively.
Usually θ2 is of much lower dimensions than θ1.

I.e., consider simple regression:
Yi = X ′iβ + εi

where εi ∼ N(0, 1). Before we would specify a prior on β, say β ∼ N(0, I), and compute
the posterior given data X and Y . However, specifying a normal distribution for β with
fixed mean and variance might be restrictive; instead, we can specify β as β ∼ N(0, Vβ),
and Vβ ∼ IW (ν, V ), where IW denotes inverted Wishart. This allows for a much more
flexible specification of prior distribution of beta.

Hierarchical structure is often used in more complicated settings and estimated with Gibbs
sampler. However, for one of the stages of Gibbs drawing a distribution from posterior can
be burdensome (i.e. example when we condition on both data and some other parameter).
To address this issue we discuss another frequently used algorithm, Metropolis-Hastings.
This is a powerful method which can also be coupled with Gibbs sampler (often referred
to as hybrid MCMC methods).

3.4.5 Mixture of Normals

A frequently used example of hierarchical structure is mixture of normals. Assume the
following prior distribution for yi:

yi ∼ N(µindI ,Σindi)

indi ∼ Multinomial(pvec)

yi has N dimensions, and pvec is a vector of K probabilities.Hence, for each i yi can be
drawn from one of K Normal distributions, depending on realization of indi. This model
allow for a very flexible specification; there is a result showing that mixture of normals can
approximate any non-parametric dsitribution, adding enough mixture components.

Priors of mixture of normals can be taken in a convenient conditional conjugate form:

pvec ∼ Dirichlet(α)
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µk ∼ N(µ̄,Σk ⊗ α−1
µ )

Σk ∼ IW (ν, V )

This is a hierarchical structure: pvec is the first stage, Σk and µk is the second stage.

3.4.6 Metropolis-Hastings Algorithm

Gibbs sampler is an enormously useful procedure, but it requires a lot of simulation from
conditionals. Sometimes it can be restrictive (for the same reasons as simulating from the
original posterior can be restrictive). Consider the case when π(θ|x) is easy to evaluate,
but difficult to draw from. For this cases there is a Metropolis class of algorithms, in
particular, Metropolis-Hastings.

Suppose we have current value θk. As said above it is difficult to draw from π(θ|θk, x)
and use standard MCMC methods. The idea is to find a candidate distribution q(θ|θk, x)
(which might not depend on θk) which (ideally) would be close to p(θ|x), but from which
it would be easy to draw. Then we can draw from this distribution and accept or reject
this draws with probability

p(θ, θk) = min(1,
π(θ|x)q(θk|θ, x)

π(θk|x)q(θ|θk, x)
)

so that P (θk+1 = θ) = p(θ, θk).

3.4.7 Metropolis Chain with Importance Sampling

Importance sampling relies on having a good approximation of π(·). Usually, this is an
asymptotic approximation of the posterior with fattened tails. The same idea can be
applied to the Metropolis-Hastings algorithm: candidate function q(θ|θk, x) is taken using
the same ideas, so it is independent of current value θk: q(θ|θk, x) = qimp(θ|x). In this case
acceptation probability becomes

p(θ, θk) = min(1,
π(θ|x)qimp(θk|x)

π(θk|x)qimp(θ|x)
)

If qimp is a good approximation of π acceptation probability would be close to one. This
implies that the chain would have almost no autocorrelation.

As in the importance sampling, it is necessary that candidate distribution q has fatted
tails than target distribution π (as in importance sampling). If it is not the case once the
chain wonder off to the tails rejection rate falls, so the chain repeats itself a lot, building
up mass.

3.4.8 Metropolis Chains Random Walk

Another particular distribution for q is defined by using random walk to generate proposal
values:

θ = θk + ε
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where ε ∼ N(0, s2Σ). This candidate density is symmetric, q(θ|θk, x) = q(θk|θ, x). Accep-
tation probability then becomes

p(θ, θk) = min(1,
π(θ|x)

π(θk|x)
)

At first glance, this seems to be a very neat solution: we do not require much knowledge
about π(·) as in case of importance function Metropolis, and the chain can easily navigate
in the parametric space. Unfortunately, it is only at first glance: RW Metropolis should
be tunes by choosing Σ matrix and appropriate s2 scaling factor. This requires some prior
knowledge about π. Luckily, there are methods to determine the scaling of RW Metropolis
(see Rossi et al. 2005, Section 3.10.3).

3.4.9 Hybrid MCMC Methods

Gibbs sampler can be combined with Metropolis algorithm. In the models with hierarchical
structure (which we will discuss below) we can easily sample from posterior independent of
data, but no so easily sample from posterior depending on data. One of possible solutions
is to replace the ’Gibbs’ draw in the second case with a Metropolis step. For more details
please see Rossi et al. (2005), section 3.12.

3.5 Applications

3.5.1 Demand Estimation: Heterogeneity

Please see the paper of Dube, Hitsch and Rossi (2012) [1]. Authors use mixture of normals
to control for heterogeneity of agents. We will cover this during the lecture if we have time
left.
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